5,891 research outputs found

    Conceptual model of effect and form of architecture and structures

    Get PDF
    In addition to having the most stability, the first task that every building has to do is having the economic factor, which is one of the concerns of the builders. One of the tools for the advent of architectural form is the structure. This is despite the fact that the limitless artistic thinking has very little unity with numerical and enclosed numerical thinking in the framework of structural engineering math. The date of the interaction between the architecture and the structure implies that the industrial revolution and the consequences are considered as a major event contributed to the further disruption of the relationship between architecture and structural engineering. In many studies, the form of architecture, structure, and nature have been distinctly examined, but in the present study, it was tried to link these two relatives, structures and architectures from the form in nature using technology. First, the evolution of structural and architectural harmony in different historical periods was studied. Then, we focused on natural patterns such as human, plant, and animal structures and finally, works by the Spanish architect, Gullart, was analyzed as an external case study. Regarding the above, this study has achieved a model and a strategy to enhance the quality of construction and interaction of structure and architecture using the structural structure in the existing forms in nature.Keywords: Architecture, Structures, Nature, Architectural and Structural Interactio

    LINEAR FEATURES IN PHOTOGRAMMETRY

    Get PDF
    Traditional photogrammetric activities such as orientation, triangulation, and object space reconstruction have been relying on distinct points in their underlying operations. With the evolution of digital photogrammetry, there has been a tremendous interest in utilizing linear features in various photogrammetric activities. This interest has been motivated by the fact that the extraction of linear features from the image space is easier to automate than distinct points. On the other hand, object space linear features can be directly derived form terrestrial Mobile Mapping Systems (MMS), GIS databases, and/or existing maps. Moreover, automatic matching of linear features, either within overlapping images or between image and object space, is easier than that of distinct points. Finally, linear features possess more semantic information than distinct points since they most probably correspond to object boundaries. Such semantics can be automatically identified in imagery to facilitate higher-level tasks (e.g., surface reconstruction and object recognition). This paper summarizes the use of linear features, which might be represented by analytical functions (e.g., straight-line segments) or irregular (freeform) shapes, in photogrammetric activities such as automatic space resection, photogrammetric triangulation, camera calibration, image matching, surface reconstruction, image-to-image registration, and absolute orientation. Current progress, future expectations, and possible research directions are discussed as well

    Exchange energy and generalized polarization in the presence of spin-orbit coupling in two dimensions

    Get PDF
    We discuss a general form of the exchange energy for a homogeneous system of interacting electrons in two spatial dimensions which is particularly suited in the presence of a generic spin-orbit interaction. The theory is best formulated in terms of a generalized fractional electronic polarization. Remarkably we find that a net generalized polarization does not necessarily translate into an increase in the magnitude of the exchange energy, a fact that in turn favors unpolarized states. Our results account qualitatively for the findings of recent experimental investigations

    Young stellar populations in early-type dwarf galaxies; occurrence, radial extent and scaling relations

    Get PDF
    To understand the stellar population content of dwarf early-type galaxies (dEs) and its environmental dependence, we compare the slopes and intrinsic scatter of color-magnitude relations (CMRs) for three nearby clusters, Fornax, Virgo and Coma. Additionally we present and compare internal color profiles of these galaxies to identify central blue regions with younger stars. We use the imaging of the HST/ACS Fornax cluster in the magnitude range of -18.7 <= M_g' <= -16.0, to derive magnitudes, colors and color profiles, which we compare with literature measurements. Based on analysis of the color profiles, we report a large number of dEs with young stellar populations in their center in all three clusters. While for Virgo and Coma the number of blue-cored dEs is found to be 85 +/- 2% and 53 +/- 3% respectively, for Fornax, we find that all galaxies have a blue core. We show that bluer cores reside in fainter dEs, similar to the trend seen in nucleated dEs. We find no correlation between the luminosity of the galaxy and the size of its blue core. Moreover, a comparison of the CMRs of the three clusters shows that the scatter in Virgo's CMR is considerably larger than in the Fornax and Coma clusters. Presenting adaptive smoothing we show that the galaxies on the blue side of the CMR often show evidence for dust extinction, which strengthens the interpretation that the bluer colors are due to young stellar populations. We also find that outliers on the red side of the CMR are more compact than expected for their luminosity. We find several of these red outliers in Virgo, often close to more massive galaxies. No red outlying compact early-types are found in Fornax and Coma in this magnitude range while we find three in the Virgo cluster. We suggest that the large number of outliers and larger scatter found for the Virgo cluster CMR is a result of Virgo's different assembly history.Comment: 24 pages, accepted for publication in Astronomy and Astrophysic

    Chaos in Time Dependent Variational Approximations to Quantum Dynamics

    Full text link
    Dynamical chaos has recently been shown to exist in the Gaussian approximation in quantum mechanics and in the self-consistent mean field approach to studying the dynamics of quantum fields. In this study, we first show that any variational approximation to the dynamics of a quantum system based on the Dirac action principle leads to a classical Hamiltonian dynamics for the variational parameters. Since this Hamiltonian is generically nonlinear and nonintegrable, the dynamics thus generated can be chaotic, in distinction to the exact quantum evolution. We then restrict attention to a system of two biquadratically coupled quantum oscillators and study two variational schemes, the leading order large N (four canonical variables) and Hartree (six canonical variables) approximations. The chaos seen in the approximate dynamics is an artifact of the approximations: this is demonstrated by the fact that its onset occurs on the same characteristic time scale as the breakdown of the approximations when compared to numerical solutions of the time-dependent Schrodinger equation.Comment: 10 pages (12 figures), RevTeX (plus macro), uses epsf, minor typos correcte

    Stochastic Inflation:The Quantum Phase Space Approach

    Get PDF
    In this paper a quantum mechanical phase space picture is constructed for coarse-grained free quantum fields in an inflationary Universe. The appropriate stochastic quantum Liouville equation is derived. Explicit solutions for the phase space quantum distribution function are found for the cases of power law and exponential expansions. The expectation values of dynamical variables with respect to these solutions are compared to the corresponding cutoff regularized field theoretic results (we do not restrict ourselves only to \VEV{\F^2}). Fair agreement is found provided the coarse-graining scale is kept within certain limits. By focusing on the full phase space distribution function rather than a reduced distribution it is shown that the thermodynamic interpretation of the stochastic formalism faces several difficulties (e.g., there is no fluctuation-dissipation theorem). The coarse-graining does not guarantee an automatic classical limit as quantum correlations turn out to be crucial in order to get results consistent with standard quantum field theory. Therefore, the method does {\em not} by itself constitute an explanation of the quantum to classical transition in the early Universe. In particular, we argue that the stochastic equations do not lead to decoherence.Comment: 43 page

    Stochastic approach to inflation II: classicality, coarse-graining and noises

    Full text link
    In this work we generalize a previously developed semiclassical approach to inflation, devoted to the analysis of the effective dynamics of coarse-grained fields, which are essential to the stochastic approach to inflation. We consider general non-trivial momentum distributions when defining these fields. The use of smooth cutoffs in momentum space avoids highly singular quantum noise correlations and allows us to consider the whole quantum noise sector when analyzing the conditions for the validity of an effective classical dynamical description of the coarse-grained field. We show that the weighting of modes has physical consequences, and thus cannot be considered as a mere mathematical artifact. In particular we discuss the exponential inflationary scenario and show that colored noises appear with cutoff dependent amplitudes.Comment: 18 pages, revtex, no figure

    Effect of salt intake on beat‐to‐beat blood pressure nonlinear dynamics and entropy in salt‐sensitive versus salt‐protected rats

    Full text link
    Blood pressure exhibits substantial short‐ and long‐term variability (BPV). We assessed the hypothesis that the complexity of beat‐to‐beat BPV will be differentially altered in salt‐sensitive hypertensive Dahl rats (SS) versus rats protected from salt‐induced hypertension (SSBN13) maintained on high‐salt versus low‐salt diet. Beat‐to‐beat systolic and diastolic BP series from nine SS and six SSBN13 rats (http://www.physionet.org) were analyzed following 9 weeks on low salt and repeated after 2 weeks on high salt. BP complexity was quantified by detrended fluctuation analysis (DFA), short‐ and long‐range scaling exponents (αS and αL), sample entropy (SampEn), and traditional standard deviation (SD) and coefficient of variation (CV(%)). Mean systolic and diastolic BP increased on high‐salt diet (P < 0.01) particularly for SS rats. SD and CV(%) were similar across groups irrespective of diet. Salt‐sensitive and ‐protected rats exhibited similar complexity indices on low‐salt diet. On high salt, (1) SS rats showed increased scaling exponents or smoother, systolic (P = 0.007 [αL]) and diastolic (P = 0.008 [αL]) BP series; (2) salt‐protected rats showed lower SampEn (less complex) systolic and diastolic BP (P = 0.046); and (3) compared to protected SSBN13 rats, SS showed higher αL for systolic (P = 0.01) and diastolic (P = 0.005) BP. Hypertensive SS rats are more susceptible to high salt with a greater rise in mean BP and reduced complexity. Comparable mean pressures in sensitive and protective rats when on low‐salt diet coupled with similar BPV dynamics suggest a protective role of low‐salt intake in hypertensive rats. This effect likely reflects better coupling of biologic oscillators.We investigated the non‐linear dynamical properties of blood pressure variability, specifically complexity analysis and detrended fluctuation analysis (DFA), of the systolic and diastolic blood pressure time series in 9 salt sensitive and 6 protected rats. We showed that salt sensitive rats exhibit varying non linear BP dynamics compared to protected rats (smoother time series), irrespective of diet; we also showed the differential impat of salt intake on complexity and DFA metrics in both strains of rats.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/122419/1/phy212823_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/122419/2/phy212823.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/122419/3/phy212823-sup-0001-SupInfo.pd

    Optimal power routing scheme between and within interlinking converters in unbalanced hybrid AC–DC microgrids

    Get PDF
    An optimal power routing (OPR) scheme between and within interlinking converters (ICs) in unbalanced hybrid AC–DC microgrids to minimise the power imbalance factor at the point of common coupling, active power losses, and voltage deviation indices for microgrids in grid-connected operating mode is proposed in this study. These goals are achieved through a multi-objective optimisation model by optimal distributing of mobile loads between available charging stations and at the same time, OPR within three phases of three-phase four-lag AC/DC converters. Numerical results obtained from implementing the proposed method on the modified IEEE 13-bus system, as an unbalanced hybrid microgrid, and IEEE 34-bus test system, as an unbalanced distribution system, demonstrate that proposed OPR algorithm is successful to satisfy the optimisation goals. For this purpose, four case studies are defined and studied to demonstrate the unique features of the proposed OPR comparing with other power routing schemes. In addition to simulation results, the OPR scheme between ICs is realistically implemented at Florida International University smart grid testbed to show the effect of the power routing on energy losses reduction
    • 

    corecore